CISM-ECCOMAS International Summer School on "Efficient High-order Discretizations for Computational Fluid Dynamics"

Suggested readings

D. Flad, G. J. Gassner. On the use of kinetic energy preserving DG- schemes for large eddy simulation. Preprint arXiv:1706.07601 (2017).


B. Froehle, P.-O. Persson. A high-order discontinuous Galerkin method for fluid-structure interaction with efficient implicit- explicit time stepping. Journal of Computational Physics 272:455- 470 (2014).


G.J. Gassner, A.R. Winters and David A. Kopriva. Split Form Nodal Discontinuous Galerkin Schemes with Summation-By-Parts Property for the Compressible Euler Equations. Journal of Computational Physics 327:39-66 (2016).


G. Giorgiani S. Fernández-Méndez, A. Huerta. Hybridizable discontinuous Galerkin with degree adaptivity for the incompressible Navier–Stokes equations. Computers & Fluids 98:196-208 (2014).


M. Kronbichler, W. A. Wall. A performance comparison of continuous and discontinuous Galerkin methods with fast multigrid solvers. Preprint arXiv:1611.03029 (2016).


R.J. LeVeque. Numerical methods for conservation laws, Springer. Originally published by Birkhauser Verlag (1992).


R. Lohner. Improved Error and Work Estimates for High Order Elements. International Journal on Numerical Methods in Fluids 72(11):1207-1218 (2013).


R. Lohner, E. Haug, A. Michalski, D. Britto, A. Degro, R. Nanjundaiah and R. Zarfam. Recent Advances in Computational Wind Engineering and Fluid-Structure Interaction. Journal of Wind Engineering and Industrial Aerodynamics 144:14-23 (2015).


R. Sevilla and Antonio Huerta. Tutorial on hybridizable discontinuous Galerkin (HDG) for second-order elliptic problems. In J. Schröder and P. Wriggers (eds.), Advanced Finite Element Technologies, volume 566 of CISM International Centre for Mechanical Science, pp. 105-129 (2016).


E.F. Toro. Riemann solvers and numerical methods for fluid dynamics. A practical introduction. Third edition, Springer (2009).


W. Pazner and P.-O. Persson, Approximate tensor-product preconditioners for very high order discontinuous Galerkin methods. reprint arXiv:1704.04549 (2017).


Downloads

See also