CISM-ECCOMAS International Summer School on "Coherent Structures in Unsteady Flows: Mathematical and Computational Methods"

Suggested readings

Haller, G., Lagrangian Coherent Structures. Annual Rev. Fluid. Mech, 47 (2015) 137-162.

Hadjighasem, A., Farazmand, M., Blazevski, D., Froyland, G. and Haller, G., A Critical Comparison of Lagrangian Methods for Coherent Structure Detection. Chaos, 27:053104, 2017.

Haller, G., Climate, Black Holes and Vorticity: How on Earth are they related? SIAM News, 49/5 (2016) 1-2.

Beron-Vera, F. J. & LaCasce, J. H. Statistics of Simulated and Observed Pair Separations in the Gulf of Mexico. J. Phys. Oceanogr. 46, 2183-2199 (2016).

Beron-Vera, F. J.; M. J. Olascoaga; G. Haller; M. Farazmand; J. Triñanes & Wang, Y. Dissipative inertial transport patterns near coherent Lagrangian eddies in the ocean Chaos 25, 08741 (2015).

Duran, R.; F. J. Beron-Vera & Olascoaga, M. J. Extracting quasi-steady Lagrangian transport patterns from the ocean circulation: An application to the Gulf of Mexico. Scientific Reports 8, 5218 (2018).

Froyland, G. and Padberg-Gehle, K., Almost-invariant and finite-time coherent sets: directionality, duration, and diffusion. In Wael Bahsoun, Chris Bose, Gary Froyland, editors, Ergodic Theory, Open Dynamics, and Coherent Structures. Proceedings in Mathematics and Statistics, volume 70, pages 171-216, Springer, 2014.

Froyland, G., and Junge, O., On fast computation of finite-time coherent sets using radial basis functions. Chaos, 25 (2015) 087409.

G. Kawahara, M. Uhlmann, and L. van Veen. The significance of simple invariant solutions in turbulent flows, Ann. Rev. Fluid Mech. 44 (2012) 203—225.

M. Avila, F. Mellivobsky, N. Roland & B. Hof, Streamwise-localized solutions at the onset of turbulence in pipe flow, Phys. Rev. Lett. 110 (2013) 224502.

R. R. Kerswell, Nonlinear Nonmodal Stability Theory, Ann. Rev. Fluid Mech. 50 (2018) 319— 345.


See also