Bone Cell and Tissue Mechanics

September 7, 2020 — September 11, 2020

Coordinator:

  • Bert van Rietbergen (Eindhoven University of Technology, The Netherlands)

Register for this course

Bone is a remarkable material: it is strong yet lightweight, can adapt itself to changes in mechanical loading, lasts for a lifetime and can repair itself after a fracture. Although biology has revealed many secrets of how bone cells can form and remove bone tissue, the mechanisms that control these processes, and the role of mechanical loading in this, are still not well understood. The goal of this course is to provide state-of-the-art information on this topic. To do so, the course will review the entire area of bone cell and tissue mechanics at all three commonly distinguished levels of structural organization of bone: the bone organ level, the bone tissue level and the bone cell level. The course will be of a multi-disciplinary nature and include topics like bone biology, imaging and computational modeling.
At the bone organ level, the focus will be on the diagnosis of bone strength using imaging and computational techniques. Bone remodeling at this level is often considered as an optimization process that adapts bone density and shape to the mechanical loading conditions. Hypothetical models that are developed to describe such adaptations of bone are discussed.
At the tissue level, bone can form remarkable complex porous architectures. This capability enables bone to adapt to a wide range of mechanical conditions, is resembled by its hierarchical organization and reflected by a wide spectrum of material properties bone can take on. Methods to visualize and model the complex structures of this living mineral tissue in 3D in-vivo have become available only over the last two decades. Hypothetical models describing how these structures evolve, how they can adapt to mechanical loading and how they can be affected by bone diseases are discussed.
At the level of the cell, promising candidates for the mechanosensory system will be discussed, as well as possible signaling pathways for the communication between bone cells. At this level, the porosity of the bone tissue itself also becomes an important factor since it is assumed that fluid flow plays an important role in the mechanosensory system. Recently developed techniques for visualizing such small structures, as well as techniques for stimulating and manipulating cells, such as microfluidics devices for bone cell mechanobiology studies, 3D printing of bone stimulating implants, and tissue engineering of bone to create humanized 3D models are discussed.
Besides being informative, it is hoped that the course will function as a forum for the exchange of data, philosophy, and ideas across disciplinary divides and so provide further stimulus for a comprehensive approach to the problems of bone mechanics. To further facilitate this, we will organize a student poster-pitch presentation at the end of the first day. Also, there will be a question and answers session at the end of all other days where student can ask questions to the teachers, and where the teachers will stimulate discussions. The target audience are graduate students, PhD candidates and young faculty members. We expect an audience as diverse in background as the lecturers, that is to say spanning across the professional spectrum from biomedical and structural engineers, to biologists, veterinarians and orthopaedic and dental surgeons.

Downloads

See also